Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cells ; 11(9)2022 04 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1809730

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may affect female reproductive health. Here, we investigated the potential of SARS-CoV-2 to infect the follicular microenvironment, in particular granulosa (GCs) and cumulus cells (CCs), thus providing evidence for a productive infection. GCs and CCs were recovered from women (n = 25) who underwent in vitro fertilization at the Assisted Reproductive Unit, Siena University Hospital. Follicular ovarian cells were co-cultured with SARS-CoV-2 and then analyzed by qPCR, immunofluorescence (IF), western blot (WB) and transmission electron microscopy (TEM). In addition, cell culture supernatant was used to infect VERO6 cells. We demonstrated the expression of cell host factors ACE2, TRPMSS2, BSG and CTSL, which are pivotal for the virus life cycle. Cultured GCs and CCs incubated with SARS-CoV-2 revealed productive SARS-CoV-2 infection at 24 h, 48 h and 72 h post-adsorption. Indeed, SARS-CoV-2 RNA, spike and nucleocapsid proteins were detected in GCs and CCs, and their cell culture supernatant successfully infected the standard VERO E6 cells. Finally, TEM showed full-size virions attached to the membrane and located inside the cytoplasm. This in vitro study reveals the susceptibility of human ovarian cells to SARS-CoV-2 infection, suggesting a potential detrimental effect of COVID-19 infection on female human fertility.


Asunto(s)
COVID-19 , Animales , Chlorocebus aethiops , Femenino , Fertilidad , Humanos , ARN Viral , SARS-CoV-2 , Células Vero
2.
Int J Infect Dis ; 112: 40-44, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1654526

RESUMEN

OBJECTIVES: This study aimed to describe the longitudinal evolution of neutralizing antibody titres (NtAb) in three different cohorts of healthcare workers (HCWs), including vaccinated HCWs with and without a previous SARS-CoV-2 infection and previously infected unvaccinated HCWs. COVID-19 was mild or asymptomatic in those experiencing infection. METHODS: NtAb was tested before BNT162b2 mRNA COVID-19 vaccine (V0), 20±2 days after the first dose (V1_20), 20±3 days (V2_20) and 90±2 days (V2_90) after the second dose in vaccinated HCWs and after about 2 months (N_60), 10 months (N_300) and 13 months (N_390) from natural infection in unvaccinated HCWs. NtAb were measured by authentic virus neutralization with a SARS-CoV-2 B.1 isolate circulating in Italy at HCW enrolment. RESULTS: Sixty-two HCWs were enrolled. NtAb were comparable in infected HCWs with no or mild disease at all the study points. NtAb of uninfected HCWs were significantly lower with respect to those of previously infected HCWs at V1_20, V2_20 and V2_90. The median NtAb fold decrease from V2_20 to V2_90 was higher in the uninfected HCWs with respect to those with mild infection (6.26 vs 2.58, p=0.03) and to asymptomatic HCWs (6.26 vs 3.67, p=0.022). The median Nabt at N_390 was significantly lower than at N_60 (p=0.007). CONCLUSIONS: In uninfected HCWs completing the two-dose vaccine schedule, a third mRNA vaccine dose is a reasonable option to counteract the substantial NtAb decline occurring at a significantly higher rate compared with previously infected, vaccinated HCWs. Although low, Nabt were still at a detectable level after 13 months in two-thirds of previously infected and unvaccinated HCWs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Personal de Salud , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas
3.
Biomolecules ; 11(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1572360

RESUMEN

Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antimonio/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Cloruros/farmacología , Indazoles/farmacología , Compuestos Orgánicos de Oro/farmacología , Compuestos Organometálicos/farmacología , Compuestos de Rutenio/farmacología , SARS-CoV-2/efectos de los fármacos , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Animales , Antimonio/química , Antivirales/química , Línea Celular , Cloruros/química , Chlorocebus aethiops , Descubrimiento de Drogas , Humanos , Indazoles/química , Compuestos Orgánicos de Oro/química , Compuestos Organometálicos/química , Compuestos de Rutenio/química , Células Vero
4.
ChemMedChem ; 16(23):3495-3495, 2021.
Artículo en Inglés | Wiley | ID: covidwho-1557779

RESUMEN

The Front Cover shows bithiazole derivatives acting as broad-spectrum antiviral agents (BSAAs) by targeting human host cells. These molecules block the replication of human rhinoviruses (hRVs) and Zika virus (ZIKV) via inhibition of the intracellular protein PI4KIII? while the inhibition of SARS-CoV-2 entry and replication seems to be connected with the modulation of an additional target. Cover design by Marco Radi. More information can be found in the Communication by Maria?Grazia Martina, Marco Radi et?al.

5.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1400781

RESUMEN

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Antivirales/farmacología , Inhibidores Enzimáticos/química , Rhinovirus/fisiología , SARS-CoV-2/fisiología , Tiazoles/química , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Antivirales/química , Antivirales/metabolismo , COVID-19/patología , COVID-19/virología , Línea Celular , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , SARS-CoV-2/aislamiento & purificación , Tiazoles/metabolismo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/patología
6.
Life (Basel) ; 11(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1374447

RESUMEN

We aimed to investigate neutralizing antibody titers (NtAbT) to the P.1 and B.1 SARS-CoV-2 variants in a cohort of healthy health care workers (HCW), including 20 previously infected individuals tested at baseline (BLinf, after a median of 298 days from diagnosis) and 21 days after receiving one vaccine dose (D1inf) and 15 uninfected subjects tested 21 days after the second-dose vaccination (D2uninf). All the subjects received BNT162b2 vaccination. D1inf NtAbT increased significantly with respect to BLinf against both B.1 and P.1 variants, with a fold-change significantly higher for P.1. D1inf NtAbT were significantly higher than D2uninf NtAbT, against B.1 and P.1. NtAbT against the two strains were highly correlated. P.1 NtAbT were significantly higher than B.1 NtAbT. This difference was significant for post-vaccination sera in infected and uninfected subjects. A single-dose BNT162b2 vaccination substantially boosted the NtAb response to both variants in the previously infected subjects. NtAb titers to B.1 and P.1 lineages were highly correlated, suggesting substantial cross-neutralization. Higher titers to the P.1 than to the B.1 strain were driven by the post-vaccination titers, highlighting that cross-neutralization can be enhanced by vaccination.

7.
Int J Infect Dis ; 108: 176-178, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1351693

RESUMEN

OBJECTIVES: To measure SARS-CoV-2 neutralizing antibody (NtAb) titres in previously infected or uninfected health care workers who received one or two doses of BNT162b2 mRNA COVID-19 vaccine. METHODS: NtAbs were titrated as dose-inhibiting 50% virus replication (ID50) by live virus microneutralization. We evaluated 41 health care workers recovering from mild or asymptomatic infection at first vaccination dose (T1_inf) and 21 days later (T2_inf). Sixteen uninfected health care workers were evaluated 20 days after first dose (T2_uninf) and 20 days after second vaccine dose (T3_uninf). RESULTS: At T2_inf, but not at T1_inf, there was a significant correlation between days from diagnosis (median 313, interquartile range 285-322) and NtAb levels (P = 0.011). NtAb titres increased at T2_inf with respect to T1_inf (1544 (732-2232) vs 26 (10-88), P < 0.001). Similarly, there was a significant increase in NtAb titres at T3_uninf compared with T2_uninf (183 (111-301) vs 5 (5-15), P < 0001). However, NtAb levels at T2_inf were significantly higher than those at T2_uninf and T3_uninf (P < 0.0001 for both analyses). CONCLUSIONS: A single vaccination in people with mild or asymptomatic previous infection further boosts SARS-CoV-2 humoral immunity to levels higher than those obtained by complete two-vaccination in uninfected subjects.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Vacuna BNT162 , Vacunas contra la COVID-19 , Personal de Salud , Humanos , ARN Mensajero
10.
Open Forum Infect Dis ; 8(7): ofab312, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1322652

RESUMEN

We describe the time course of neutralizing antibody (NtAb) titer in a cohort of health care workers with mild or asymptomatic severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. NtAb levels decreased over time; however, serum neutralizing activity remained detectable after a median of 7 months from SARS-CoV-2 diagnosis in the majority of cases.

11.
Eur J Med Chem ; 224: 113683, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1293756

RESUMEN

The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 µM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 µM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Flavivirus/efectos de los fármacos , Orthomyxoviridae/efectos de los fármacos , Purinas/química , Purinas/farmacología , SARS-CoV-2/efectos de los fármacos , Terapia Molecular Dirigida , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA